
On the computation of Enterprise Architecture
Managemnet KPIs - essential operators and

Ecore supporting languages

Erdisa Subashi, Ivan Monahov, Christopher Schulz, Florian Matthes

Technische Universität München (TUM)
Chair for Informatics 19 (sebis)

Boltzmannstr. 3, 85748 Garching bei München, Germany
{erdisa.subashi,ivan.monahov,christopher.schulz,matthes}@in.tum.de

Abstract. Enterprise Architecture Management (EAM) strives for align-
ing business and IT, facilitating stakeholder communication, and fos-
tering the continuous transformation of organizations. As in any other
management discipline, EAM applies the concept of metrics, which al-
lows for the measurement of the actual goal fulfillment. Furthermore,
distinct tools support architects in efficiently gathering, processing, and
disseminating information related to the current and future state of the
enterprise architecture. However, given that the existing panoply of cur-
rent EAM tools only offers a limited metric support, we intend to extend
our java-based EAM research software with this capability. As a starting
point, we first elaborate on a set of operators a language employed for
the implementation of EAM metrics has to provide. We afterwards point
out which of these operators are inherently included in languages simul-
taneously supporting Ecore as the meta model of the Eclipse Modeling
Framework (EMF). We choose this well-known and open source frame-
work for our studies, since our EAM research software is already able
to export Ecore models. Lastly, we demonstrate how one specific EAM
metric can be implemented in the examined languages. The gained find-
ings will serve as an input for the future extension of our research tool
with KPI functionalities.

Key words: EAM, metrics, Ecore, operators, language

1 Introduction

In the last ten years, Enterprise Architecture (EA) and its management (EAM)
received considerable attention from academics, practitioners, consultants, as
well as tool vendors. Thereby, EAM targets the enterprise in holistic manner
and seeks to evolve the enterprise to facilitate the alignment of business and in-
formation technology (IT) as a respond to rapidly changing business environment
in modern globalized enterprises. In this sense, an EA can be described as the
”fundamental organization of a system [enterprise] embodied in its components,
their relationships to each other, and to the environment, and the principles

2 Erdisa Subashi, Ivan Monahov, Christopher Schulz, Florian Matthes

guiding its design and evolution” as proposed by the ISO Standard 42010 [24].
According to [12] and [34], the three most important advantages offered by
EAM are

– to create a holistic perspective on the enterprise, containing business and IT
elements,

– to foster communication by defining a common language for stakeholders with
different backgrounds, and

– to gather information from different sources to ensure a consistent decision
base.

According to [13], management functions are usually described by planning,
leading, organizing, and controlling dimensions. Moreover, according to the same
author, the term management generally refers ”to the process of assembling
and using resources - human, financial, material, and information - in a goal
directed manner to accomplish tasks in an organization”. Thus, EAM initiatives
are driven by specific EAM goals (c.f. [15]).

Key Performance Indicators, also known as KPIs, help an organization to
define and measure the progress toward the achievement of these goals. A KPI
can be defined as ”an item of information collected at regular intervals to track
the performance of a system [enterprise]” [18].

Matthes et. al. provide in [28], a collection of 52 EAM KPIs gathered from
both literature and industry partners (in the remainder of the paper we refer
to the EAM KPI catalog as ”catalog”). These KPIs are described by employing
the EAM KPI description structure proposed in [29]. Following three elements
of this description structure are to be considered when computing these KPIs:
description, calculation description and information model. Focusing only on
these three elements, we will use the term EAM metric instead of EAM KPI in
the reminder of this paper.

According to [27] and [32], there is currently only a limited EAM tool sup-
port for metrics and their computation. Our research tool Tricia [30], which can
be used to describe and manage EA (c.f. [14]) also lacks support of EAM metric
computation. Presently, our Java-based tool enables the description of EAs by
employing the concept of Hybrid Wikis. It further provides the functionality to
export these Hybrid Wiki EA representations into a Ecore models (the meta-
model of the EMF, c.f. [2]). The EMF is a Java framework and code generation
facility for building tools and other applications based on a structured model.
By using Ecore models, we intend to calculate the catalog’s metrics at runtime
in a model-driven manner, instead of defining Java implementation of each KPI
as a hard-wired method in the code-base. Therefore, our paper addresses the
following three research questions:

1. What operators are required for the computation of the metrics presented
in the catalog?

2. Which languages that support the EMF inherently provide these operators?
3. How could we implement a concrete metric in these identified languages?

Title Suppressed Due to Excessive Length 3

The remainder of this paper unfolds as follows. Section 2 is concerned with
the identification of a set of operators required to compute the catalog’s metrics.
Moreover, we assess the extend to which specific languages support this set of
operators. In Section 3 we demonstrate how one specific KPI can be implemented
in the examined languages. Finally, Section 4 concludes the paper and outlines
future research topics.

2 Contribution

For the computation of metrics a distinct set of operators are needed. To discover
these operators, we used the following search engines: Google, Google Scholar,
and the library system of our university. Between August, 13th and August,
23th 2012 we searched for terms: ”metric”, ”kpi”, ”operators”, ”computation”,
”query”, ”language”, ”model”, ”Ecore” along with possible combinations be-
tween them. This literature review-based research has shown that there is no
reference list containing concrete operators for the computation of metrics. For
this reasons, we focused on operators provided by query languages and their for-
mal underlying algebra. The identified basic operators in addition to the calcu-
lation description as well the information model of each metric (c.f. [28]) allowed
us to define a set of required operators.

2.1 Operators for implementing EAM metrics

The ability to query models is needed in order to retrieve required computational
data from the underlying models. Undoubtedly, one of the most renowned query
languages is the Structured Query Language (SQL) [31] which is partly based on
relational algebra [22]. In 1972 Codd coined the term relational algebra as ”An
algebra whose primary purpose is to provide a collection of operations on rela-
tions of all degrees suitable for selecting data from a relational data base” [16].
According to the relational algebra, there are following eight operations (in line
with the terminology of [16]): cartesian product, union, intersection, difference,
restriction (more commonly known as selection [22]), join, division, and pro-
jection. In addition to these relational operations, the relational algebra also
includes the following six comparison operators (c.f. [22]): equal, not equal, less
than, greater than, less than or equal to, and greater than or equal to. Finally,
the algebra also comprises logical operators (c.f. [22]): and, or, and not.

Further, [22] stated that relational algebra does not include arithmetic op-
erators, e.g., addition (+), subtraction (−), multiplication (∗), and division (/).
It also lacks aggregate functions as stated in [26]. Against this background, the
same author proposed an extension of the relational algebra with aggregate func-
tions.

We systematically evaluated the information provided in [28] to discover the
operators that are required to compute the catalog’s set of 52 metrics. The
focus was on the description of the metric, more precisely on the computation

4 Erdisa Subashi, Ivan Monahov, Christopher Schulz, Florian Matthes

description and the associated information model. We concluded that in our
research we need to consider the operators that are already provided by the
relation algebra, as well as those included in its extensions. Considering these
two aspects we classified the operators into the following two categories: the
first group is used for the computation of metrics (computation operators), the
second group serves at querying the underlying information models (querying
operators).

Computation operators Firstly, the computation of each metric requires a
set of arithmetic operators applied on numerical values. We investigated all the
metrics in the catalog and translated the calculation descriptions into expres-
sions containing corresponding arithmetic operators. The analysis proved, that
all of the basic arithmetic operators (c.f. [22]), that is, addition, substraction,
multiplication, division are needed.

Secondly, specific aggregate functions are needed allowing the computation of
collection of numerical values. Klug in [26] defined aggregate functions as follows:
”An aggregate function takes a set of tuples as an argument and produces a single
simple value as a result”. Similar to the basic arithmetic operators, our analysis
showed, that the following set of aggregate functions (c.f. [26]) are needed to
compute the catalog’s metrics: count, sum, average, minimum and maximum.

Thirdly, we need comparison operators, used in logical statements, to deter-
mine equality or inequality of variables or values. Our analysis revealed, that
following set of comparison operators (c.f. [16]) satisfies the needs of the catalog:
equal, not equal, grater than, less than, greater then or equal to, less then or equal
to. In addition, we also found, that we need following logical operators: and, or,
as well as not.

Querying operators In the second step of our analysis, we examined the
catalog to identify operators allowing to construct queries to retrieve data cap-
tured by each related information model. In translating each’s metric input data
into queries we were able to elaborate, that following set of operations (ac-
cording to [16]) satisfies the needs of the catalog: restriction (also known as
selection [22]), join, and projection.

2.2 Languages

As our research shows, following set of languages supports Ecore: Java, OCL,
LambdaJ, JavaScript (we use the Rhino interpreter) and LINQ. EMF supports
the direct translation of its models into Java objects. Furthermore, OCL is di-
rectly supported by EMF in its role as a navigational language, hence can be
used to query these models and their data via a specific console. The three re-
maining languages LambdaJ, JavaScript, and LINQ have been identified with
the help of a literature and web review. For each of these five languages we
studied the native operators offered as specified in the according documentation
sources [5, 7, 6, 21, 9]. Thereby, the term native refers to the built-in operators

Title Suppressed Due to Excessive Length 5

of these languages. The results were compared to the essential set of operators
discussed above. Table 1 illustrates our findings.

6 Erdisa Subashi, Ivan Monahov, Christopher Schulz, Florian Matthes

Java
JavaScript
with jLinq LambdaJ OCL LINQ

A
gg

re
ga

to
n

fu
n

ct
io

n
s

Count size count size size Count,
Long-
Count

Sum sum sum Sum
Average avg Average
Minimum min min min min Min
Maximum max max max max Max

R
el

a
ti

o
n

a
l Selection Select Select Select Select, Se-

lectMany
Grouping Group GroupBy
Join Join Join,

GroupJoin

A
ri

th
m

et
ic Addition + + + + +

Substraction − − − − −
Multiplication ∗ ∗ ∗ ∗ ∗
Division / / / / /

C
o
m

pa
ri

so
n

Equal = equals,= equal, = = =
Not equal ! = ! = ! = <> ! =
Greater than > greater greaterThan > >
Less than < less,< lessThan,< < <
Greater than
or equal to

≥ greaterEquals ≥ ≥ ≥

Less than or
equal to

≤ lessEquals ≤ ≤ ≤

L
og

ic
a
l And && and, && and and &&

Or || or,|| or or ||
Not ! not not not !
Table 1: Support of the identified operators by the examined lan-
guages

As illustrated in Table 1, only LINQ inherently supports all of the required
operators. Java is missing two aggregate functions (sum and average) and it
provides no relational operators. On the other hand, we observe that LambdaJ
extends Java with almost all these missing operators, except for join. Javascript,
along with the jLinq library does not support the grouping relation and has no
native implementation for the sum and average functions. The average function
is not specified either in OCL, which lacks also the grouping and join relational
operators. Therefore, for the last four languages, special methods supporting
the required operators have to be implemented as workarround to support the
missing operators.

Title Suppressed Due to Excessive Length 7

3 Evaluation

To demonstrate the applicability of metric implementation in the different lan-
guages we select one specific metric as a running example. The structure elements
of this KPI relevant for its computation are described as follows:

– Description: Measurement of the coverage of IT continuity plans in respect to
business-critical processes.

– Calculation description: Number of business-critical processes relying on busi-
ness applications, not covered by IT continuity plan, divided by total number
of business-critical processes relying on business applications.

– Information model : Figure 1 illustrates the information model of this metric.

Fig. 1. Information model of the metric ”IT continuity plans for business applications
supporting critical processes”

In the following, we will focus on the computation of this concrete example
described above.

3.1 Java

The Java programming language is a general-purpose concurrent class-based
object-oriented programming language specifically designed to have as few im-
plementation dependencies as possible [20]. In this paper we use EMF to trans-
late the metrics information models into efficient and easily customizable Java
code. As we can see from the snippet the computation of the metric is possible
using the existing constructs of Java. The issue with this implementation is the
lack of the relational operations e.g. selection or join which can make relatively
easier the process of retrieving data from the collections (c.f. Table 1).

Listing ?? illustrates the computation of our example metric using Java. To
keep the code readable, we do not show in the snippet the part of the code that
checks for NullPointerException when there are business processes that do not
rely on any business applications.

backgroundcolor= numbers=left, numberstyle= keywordstyle=

8 Erdisa Subashi, Ivan Monahov, Christopher Schulz, Florian Matthes

[language=Java, basicstyle=\footnotesize, caption=Java implementation, label=javaImplementation,frame=single,columns=fullflexible]

int criticalBP = 0;

int criticalBPNotCovered = 0;

for (BusinessProcess process : allBusinessProcesses){

if(process.isCritical() && process.getReliesOn() != null)

{

criticalBP += 1;

if (process.getReliesOn().getCoveredBy() == null)

criticalBPNotCovered += 1;

}

}

double result = criticalBPNotCovered/criticalBP * 100;

3.2 OCL

The Object Constraint Language (OCL) is a specification language for
describing constraints on object-oriented models [25]. Despite the fact that OCL
was originally used to add constraints to models, now OCL is being widely used
in different fields [33]. In this paper we describe OCL as a language employed to
query collections of data.

The OCL implementation in EMF is supported through Eclipse OCL. The
Eclipse OCL implementation is part of the Model Development Tools (MDT)
project. It allows the evaluation of OCL queries on Ecore models using a console
for the interactive evaluation of OCL expressions on models [3]. Among the
many operations that OCL defines on the collection types, the operation used
to specify a selection from a specific collection is the select command [17]. Using
this command we can specify which elements of a collection we want to retrieve
to compute a concrete metric as illustrated in Listing ??. In this example we
take the sizes (number of items) of the collections that match a specific criterion
and use the values to compute the metric.

An advantage of using this language is the fact that the evaluation of OCL
expressions does not change the state of the system, because they return just a
value [21].

[language=OCL, basicstyle=, caption=OCL implementation, label=oclImplementation,frame=single,columns=fullflexible]
(BusinessProcess.allInstances()-¿ select(process:BusinessProcess—process.isCritical =
true and process.reliesOn-¿size()¡¿0)-¿size())/ (BusinessProcess.allInstances() -¿ se-
lect(process: BusinessProcess— process.isCritical = true and process.reliesOn.coveredBy-
¿size()=0)-¿size())*100

3.3 LambdaJ

Extending Java by the LambdaJ library allows the manipulation of collections
in a pseudo-functional and statically typed way [8]. Using LambdaJ the iterations
and loops on collections of data can be avoided through a set of operations on
collections that this library provides.

Title Suppressed Due to Excessive Length 9

Listing ?? illustrates the computation of our example metric using LambdaJ.
In using the select operator we retrieve from a collection those items that match
the criterion specified by the having operator. The resulting value is computed
using the sizes of the two collections that match our query.

Among the disadvantages of LambdaJ we can mention the fact that it is less
performant than Java [8], and as we have experienced, sometimes there is a lack
of proper documentation.

[language=Java, basicstyle=, caption=LambdaJ implementation, label=lambdajImplementation,frame=single,columns=fullflexible]
int criticalBP = select(businessProcesses, having(on(BusinessProcess.class).isCritical()).
and(having(on(BusinessProcess.class).getReliesOn(), not(equalTo(null))))).size();

int criticalBPNotCovered = select(businessProcesses, having(on(BusinessProcess.class).isCritical()).
and(having(on(BusinessProcess.class).getReliesOn().getCoveredBy(), equalTo(null)))).size();

double result = criticalBPNotCovered/criticalBP * 100;

3.4 JavaScript

JavaScript is defined as a high-level, dynamic and un-typed interpreted pro-
gramming language that is well-suited to object-oriented and functional pro-
gramming styles [19]. To integrate scripting with JavaScript in the EMF envi-
ronment we use Rhino [11]. Rhino is a JavaScript interpreter which is entirely
written in Java. Its main purpose is to facilitate writing programs that use the
Java platform APIs in JavaScript [19]. With Rhino we can query the Java classes
generated by EMF using JavaScript code, as we have illustrated in Listing ??.
In this example we used the jlinq library to make the code more readable. Jlinq
is a JavaScript library that allows us to perform queries on arrays of data [6].
Instead of using loops, we can write queries to retrieve the data we need. As il-
lustrated in the example, the business processes are checked to match a specified
criterion using the keywords is and isNot. Therefore we retrieve the sizes of the
two collections used to compute the value of the metric.

[language=ocl, basicstyle=, caption=Rhino implementation, label=rhinoImplementation,frame=single,columns=fullflexible]
var criticalBP = jLinq.from(businesProcesses). is(’isCritical’).is(’reliesOn’).select().length;

var criticalBPNotCovered = jLinq.from(businesProcesses). is(’isCritical’).isNot(’reliesOn.coveredBy’).select().length;

var result = criticalBPNotCovered/criticalBP * 100;

3.5 LINQ

Language Integrated Query (LINQ) is a language designed to simplify data
queries in .NET [27]. The advantage of LINQ is its ability to query collections of
objects by using language keywords and familiar operators [10]. LINQ is intro-
duced as part of the .NET Framework, and it can construct a query in C# [23]
or Visual Basic [35]. During our related work research on languages supporting
Ecore, we found out that there is a project called EMF4NET [4]. However, when
we tried to use this project we discovered, that it was still in proposal phase (the
status was last checked on August, 31th 2012) and there was no workaround avail-
able. Thus, we tried to find alternative paths to compute metrics using LINQ
on Ecore models. Thereby, we found and tried to evaluate the tool Acceleo [1].

10 Erdisa Subashi, Ivan Monahov, Christopher Schulz, Florian Matthes

Acceleo is a code generator used to transform models into code [1]. One of the
possible transformations is to generate C# code from UML 2.0 models. This is
evaluated not to be a favorable solution in our case, because firstly we would
need to translate Ecore models into UML 2.0 models, and secondly we could not
directly use the instance data.

4 Conclusion and outlook

Depending on the fact, that there is a lack of tool support for the computation
of EAM metrics (c.f. [27], [32]), we intend to extend our java-based research
software to provide this capability. Therefore, we first identified operators that a
language employed for the computation of EAM metrics in the context of Ecore
has to provide. Then we identified languages supporting Ecore and assessed
the degree to which these languages inherently support the required operators.
Finally, we implemented all of the 52 EAM metrics from the catalog in each
of these languages to prove, that the computations can be performed. After
finishing the implementation following new questions emerged, which are to be
considered in future research:

– Bigger set of examined EAM metrics - we focused in our studies only on the 52
EAM metrics provided by the catalog. Further research should consider other
sources of EAM metrics, which could lead to an extension of the identified
operator set.

– Integration - currently we use our research tool to export Ecore models and the
metrics are computed out of the tool. In future, one of the described solutions
is to integrated in our tool to extend it by the capability to compute metrics
on run-time.

– Domain-specific language (DSL) - adopting the solutions presented above, we
are forced to create redundant data (Hybrid models are exported in Ecore
models). Therefore, future research should also focus on the development of a
new DSL, providing all identified operators and supporting our Hybrid models.

References

1. Acceleo official Web site. http://www.acceleo.org/pages/home/en, 2012. [Online;
accessed May-2012].

2. Eclipse Modeling Framework Project Web site. http://www.eclipse.org/

modeling/emf/, 2012. [Online; accessed May-2012].
3. Eclipse project : Model Development Tools (MDT). http://www.eclipse.org/

modeling/mdt/?project=ocl, 2012. [Online; accessed May-2012].
4. EMF4Net proposal project Web site. http://wiki.eclipse.org/EMF4Net_

Proposal, 2012. [Online; accessed May-2012].
5. Java dcumentation. http://docs.oracle.com/javase/6/docs/api/java/util/

Collections.html, 2012. [Online; accessed July-2012].

Title Suppressed Due to Excessive Length 11

6. jlinq Project Web site. http://hugoware.net/projects/jlinq, 2012. [Online;
accessed May-2012].

7. LambdaJ dcumentation. http://lambdaj.googlecode.com/svn/trunk/html/

apidocs/ch/lambdaj/Lambda.html, 2012. [Online; accessed July-2012].
8. LambdaJ official Web site. http://code.google.com/p/lambdaj/, 2012. [Online;

accessed May-2012].
9. LINQ dcumentation. http://msdn.microsoft.com/en-us/library/bb882641,

2012. [Online; accessed July-2012].
10. LINQ Project Web site. http://msdn.microsoft.com/en-us/library/bb397926.

aspx, 2012. [Online; accessed May-2012].
11. Rhino official Web site. http://www.mozilla.org/rhino/, 2012. [Online; accessed

May-2012].
12. S. Aier, C. Riege, and R. Winter. Classification of enterprise architecture sce-

narios – an exploratory analysis. Enterprise Modelling and Information Systems
Architectures, 3:14–23, 2008.

13. J. Black and L. Porter. Management: meeting new challenges. Prentice Hall, 2000.
14. T. Büchner, F. Matthes, and C. Neubert. Data model driven implementation of

web cooperation systems with tricia. In Proceedings of the Third international
conference on Objects and databases. Springer-Verlag, 2010.

15. S. Buckl, T. Dierl, F. Matthes, and C. M. Schweda. Building blocks for enterprise
architecture management solutions. In F. e. a. Harmsen, editor, Practice-Driven
Research on Enterprise Transformation, second working conference, PRET 2010,
Delft, pages 17–46, Berlin, Heidelberg, Germany, 2010. Springer.

16. E. F. Codd. Relational completeness of data base sublanguages. In Database
Systems, pages 65–98. Prentice-Hall, 1972.

17. R. S. Corporation. Object Constraint Language Specification: Version 1.1. Rational
Software, 1997.

18. C. Fitz-Gibbon. Performance Indicators. Bera Dialogues. Multilingual Matters,
1990.

19. D. Flanagan. JavaScript: The Definitive Guide. O’Reilly Media, 2011.
20. J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM) Language Specification,

The (3rd Edition) (Java (Addison-Wesley)). Addison-Wesley Professional, 2005.
21. O. M. Group. Ocl 2.0 specification, June 2005.
22. T. Halpin and T. Morgan. Information Modeling and Relational Databases, Second

Edition (The Morgan Kaufmann Series in Data Management Systems). Morgan
Kaufmann, 2 edition, Mar. 2008.

23. A. Hejlsberg, S. Wiltamuth, and P. Golde. C# Language Specification. Addison-
Wesley Longman Publishing Co., Inc., 2003.

24. International Organization for Standardization. ISO/IEC 42010:2007 Systems
and software engineering – Recommended practice for architectural description
of software-intensive systems, 2007.

25. A. Kleppe, J. Warmer, and S. Cook. Informal formality? the object constraint lan-
guage and its application in the uml metamodel. In Selected papers from the First
International Workshop on The Unified Modeling Language: Beyond the Notation,
pages 148–161. Springer-Verlag, 1999.

26. A. Klug. Equivalence of relational algebra and relational calculus query languages
having aggregate functions. J. ACM, July 1982.

27. F. Marguerie, S. Eichert, and J. Wooley. Linq in action. Manning Publications
Co., 2008.

28. F. Matthes, I. Monahov, A. Schneider, and S. Christopher. Eam kpi catalog v1.0.
Technical report, Technische Universität München, München, Germany, 2012.

12 Erdisa Subashi, Ivan Monahov, Christopher Schulz, Florian Matthes

29. F. Matthes, I. Monahov, A. Schneider, and S. Christopher. Towards a unified and
configurable structure for ea management kpis. In 7th Workshop on Trends in
Enterprise Architecture Research (TEAR 2012), Barcelona, Spain, 2012.

30. F. Matthes and C. Neubert. Using hybrid wikis for enterprise architecture man-
agement. In 7th International Symposium on Wikis and Open Collaboration (Wik-
iSym), Mountain View, California, USA, 2011.

31. J. Melton. Sql language summary. ACM Comput. Surv., Mar. 1996.
32. J. Short and C. Wilson. Gartner assessment of enterprise architecture tool capa-

bilities. 2011.
33. H. Song, Y. Sun, L. Zhou, and G. Huang. Towards instant automatic model

refinement based on ocl. pages 167–174, New York, NY, USA, 2007. APSEC.
34. The Open Group. TOGAF “Enterprise Edition” Version 9. http://www.togaf.org

(cited 2011-06-08), 2009.
35. P. Vick. The microsoft visual basic language specification, 2008.

